3.580 \(\int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx\)

Optimal. Leaf size=88 \[ -\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 a d \sin (e+f x) \sqrt {d \sec (e+f x)}}{f}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f} \]

[Out]

2/3*b*(d*sec(f*x+e))^(3/2)/f-2*a*d^2*(cos(1/2*e+1/2*f*x)^2)^(1/2)/cos(1/2*e+1/2*f*x)*EllipticE(sin(1/2*e+1/2*f
*x),2^(1/2))/f/cos(f*x+e)^(1/2)/(d*sec(f*x+e))^(1/2)+2*a*d*sin(f*x+e)*(d*sec(f*x+e))^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3486, 3768, 3771, 2639} \[ -\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 a d \sin (e+f x) \sqrt {d \sec (e+f x)}}{f}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^(3/2)*(a + b*Tan[e + f*x]),x]

[Out]

(-2*a*d^2*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[Cos[e + f*x]]*Sqrt[d*Sec[e + f*x]]) + (2*b*(d*Sec[e + f*x])^(3/2)
)/(3*f) + (2*a*d*Sqrt[d*Sec[e + f*x]]*Sin[e + f*x])/f

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int (d \sec (e+f x))^{3/2} (a+b \tan (e+f x)) \, dx &=\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+a \int (d \sec (e+f x))^{3/2} \, dx\\ &=\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f}-\left (a d^2\right ) \int \frac {1}{\sqrt {d \sec (e+f x)}} \, dx\\ &=\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f}-\frac {\left (a d^2\right ) \int \sqrt {\cos (e+f x)} \, dx}{\sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}\\ &=-\frac {2 a d^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 b (d \sec (e+f x))^{3/2}}{3 f}+\frac {2 a d \sqrt {d \sec (e+f x)} \sin (e+f x)}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 58, normalized size = 0.66 \[ \frac {(d \sec (e+f x))^{3/2} \left (3 a \sin (2 (e+f x))-6 a \cos ^{\frac {3}{2}}(e+f x) E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+2 b\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^(3/2)*(a + b*Tan[e + f*x]),x]

[Out]

((d*Sec[e + f*x])^(3/2)*(2*b - 6*a*Cos[e + f*x]^(3/2)*EllipticE[(e + f*x)/2, 2] + 3*a*Sin[2*(e + f*x)]))/(3*f)

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b d \sec \left (f x + e\right ) \tan \left (f x + e\right ) + a d \sec \left (f x + e\right )\right )} \sqrt {d \sec \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

integral((b*d*sec(f*x + e)*tan(f*x + e) + a*d*sec(f*x + e))*sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \tan \left (f x + e\right ) + a\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(3/2)*(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

maple [C]  time = 0.80, size = 356, normalized size = 4.05 \[ -\frac {2 \left (1+\cos \left (f x +e \right )\right )^{2} \left (-1+\cos \left (f x +e \right )\right )^{2} \left (3 i \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a -3 i \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a +3 i \cos \left (f x +e \right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a \sin \left (f x +e \right )-3 i \cos \left (f x +e \right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a \sin \left (f x +e \right )+3 \left (\cos ^{2}\left (f x +e \right )\right ) a -3 a \cos \left (f x +e \right )-b \sin \left (f x +e \right )\right ) \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}}}{3 f \sin \left (f x +e \right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x)

[Out]

-2/3/f*(1+cos(f*x+e))^2*(-1+cos(f*x+e))^2*(3*I*cos(f*x+e)^2*sin(f*x+e)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1
+cos(f*x+e)))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*a-3*I*cos(f*x+e)^2*sin(f*x+e)*(1/(1+cos(f*x+e)))
^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*a+3*I*cos(f*x+e)*(1/(1+cos(
f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*a*sin(f*x+e)-3*I*co
s(f*x+e)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*
a*sin(f*x+e)+3*cos(f*x+e)^2*a-3*a*cos(f*x+e)-b*sin(f*x+e))*(d/cos(f*x+e))^(3/2)/sin(f*x+e)^5

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \tan \left (f x + e\right ) + a\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)*(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(3/2)*(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2}\,\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/cos(e + f*x))^(3/2)*(a + b*tan(e + f*x)),x)

[Out]

int((d/cos(e + f*x))^(3/2)*(a + b*tan(e + f*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d \sec {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \tan {\left (e + f x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**(3/2)*(a+b*tan(f*x+e)),x)

[Out]

Integral((d*sec(e + f*x))**(3/2)*(a + b*tan(e + f*x)), x)

________________________________________________________________________________________